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Abstract—The convex hulls of sets of n points in two and three 
dimensions can be determined with O (nlogn) operations. The 
presented algorithms use the "divide and conquer" technique and 
recursively apply a merge procedure for two non-intersecting 
convex hulls. Since any convex hull algorithm requires at least O 
(nlogn) operations, the time complexity of the proposed algorithms is 
optimal within a multiplicative constant. To solve the above 
mentioned problem, with constant space and O(nlogn) time 
complexity we have to solve another problem which is merging of 
two convex polygons represented by an array using constant space 
and O(n) time complexity. 

1. INTRODUCTION 

An algorithm is called space efficient, or in-place if it requires 
no extra memory apart from the space required for storing 
the inputs. In-place algorithms are tricky to devise due to 
limited memory considerations. Quick sort and Heap sort are 
some well-known examples of in-place algorithms. 

Several classical problems of computational geometry have 
been revisited with space requirements in mind. Two 
dimensional convex hull of points is one of them. Space 
efficient algorithms have many advantages over their classical 
counterparts. Mostly, they necessitate little memory beyond 
the input itself, so they typically avoid virtual memory paging 
and external I/O bottlenecks (unless the input itself is too 
large to fit in primary memory, in which case I/O efficient 
algorithms can be used). They also typically exhibit better 
locality of reference. Convex hull of a  set  of points is the 
smallest convex set that contains the points. The convex hull 
is a fundamental construction for mathematics and 
computational geometry. For example, Boardman [1993] 
uses the convex hull in his analysis of spectrometry data, 
and Weeks [1991] uses the convex hull to determine the 
canonical triangulation of cusped hyperbolic 3-manifolds. 
Other problems can be reduced to the convex hull for 
example, half space intersection, Delaunay triangulation, 
Voronoi diagrams, and power diagrams. In his review article, 
Aurenhammer [1991] describes applications of these 
structures in mesh generation, file searching, cluster analysis, 
collision detection, crystallography, metallurgy, urban 
planning. Cartography, image processing, numerical 
integration, statistics, sphere packing, and point location. 

Bridge is a line segment joining a vertex on the left and a 
vertex on the right that does not cross the side of either 
polygon. What we need are the upper and lower bridges for 
the two convex polygons and using them we can merge the 
two convex polygon into one in O (n) time complexity and O 
(1) space complexity. In this paper we will be solving another 
problem of merging two convex polygons using constant 
memory (in-place). We will be using this to solve the 
merging step of solving the original problem. We assume 
that the initial set of points are given in the form of an array. 
We will be using system stack which would be required for 
recursion. 

Divide and conquer is an algorithm design paradigm based on 
multi-branched recursion. A divide and conquer algorithm 
works by recursively breaking down a problem into two or 
more sub-problems of the same (or related) type (divide), 
until thesebecome simple enough to be solved directly 
(conquer). The solutions to the sub-problems are then 
combined to give a solution to the original problem. 

2. PROBLEM DEFINITION 

Construct a convex hull of given 'n' points in a two 
dimensional plane in O (nlogn) time and O(1) space 
complexity. 

3. APPROACH 

Without the loss of generality we assume that the points are 
given in an array. We are implementing a divide and conquer 
algorithm to compute convex hull of the 'n' points. In the 
process of computing the required convex hull, we will be 
using the concept of merging two convex polygons in a space 
efficient manner. 

4. PROCEDURE 

4.1. Pre-processing 

Sort the array which contains the given 'n' points with respect 
to their X-coordinate. If two points have the same X-
coordinate then the lower one with the lower Y-coordinate 
will be placed to the left of the one having higher Y-
coordinate. Without the loss of generality we assume, no 
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two points coincide. We will be using Heap Sort for 
accomplishing the sorting. 

4.2. Algorithm Convex Hull  

Input: A set S = {a1, a2 , a3,….an} Output : 

The Convex hull CH(S) of S. 

1. Divide the array into two parts S1 ,S2 taking the X –
coordinate of the median of the points in S as reference. 

 
S1= {a1,a2,a3….an/2}and S2={a(n/2+1),…an} 

 
2. Apply recursive Algorithm CH to S1 and S2 to get CH 

(S1) and CH (S2). 
3. Apply a merge algorithm to CH(S1) and  

CH (S2) to obtain CH(S) and halt. 
 
In the dividing step, we divided S into two equal parts 
based on their X –coordinate to reduce the complexity of 
finding the median x coordinate, we have presorted the 
array on the basis of the x- coordinate of the points set. 

As a base of the algorithm we will find the convex hull of the 
points using any O (n2) convex hull construction algorithm. 
At the base level there won't be more than five points in any 
subdivision. It will require about twenty five operations per 
sub- division and there would be a maximum of [n/5] such 
sub- divisions .Hence requiring no more than [n/5]*25 
operations which is linear in time. For the subsequent level we 
will use a constant space convex polygon merging algorithm 
to merge convex hulls resulting from two sub-divisions into a 
single convex hull. The merging algorithm is taken from the 
Merging of two convex polygons which is explained in the 
next section. 

 
Fig. 1: Dividing array S after the divide step of  

algorithm Convex Hull (CH) 

 
Fig. 2: Array S after the merging step of Convex Hull Algorithm 

 

4.2. Merging Two Convex Polygons 

4.2.1. Procedure to find the upper bridge of the two convex 
polygons 

1) Start with a bridge which joins the rightmost point of a left 
polygon and left most point of polygon on the right. A 
bridge is guaranteed if you join rightmost vertex on the left to 
the leftmost vertex on the right.2) Keeping the left end of the 
bridge fixed, see if the right end can be raised. That is, look at 
next vertex on the right polygon going clockwise, and see 
whether that would be a (better) bridge. Otherwise, see if the 
left end can be raised while the right end remains fixed. 

3) If made no progress in step 2 (cannot raise either side) then 
stop else repeat step 2. 

 

Fig. 3: Finding Common Upper Tangent of two convex polygon 

For the previous in above figure-1 initially we consider the 
bridge-1 connecting the vertices P5 and Q4 of left and right 
convex polygon respectively. As mentioned P5 is the 
rightmost point of the left polygon and similarly Q4 is the 
leftmost point of the right polygon. 

Now as bridge 1 is not tangent to the polygon on the right so 
the right end of the bridge 1 is raised to point Q5 forming the 
bridge 2.We check if bridge 2 is tangent to the right 
polygon . Since the answer is yes, we raise the left end of the 
bridge 2 to point P1.Now bridge 3 joining P1 and Q5 is a 
tangent to the left polygon. 

Now we check if bridge-3 is tangent to the right polygon. 

Since the answer is No, we raise the right end of the bridge 3 
to point Q6.Since bridge-4 P1 and Q6 is a tangent to the right 
polygon, we check bridge-4 is a tangent to the left polygon. 
Since bridge-4 is tangent to the left polygon as well so we stop 
our procedure and we get bridge -4 as common upper tangent 
to the two polygons. Similarly we can get common lower 
tangent to the two polygons. 

4.2.2. Merging The Two Convex Polygons represented By 
an Array 

Let us assume the vertices of the left convex polygon in the 
clockwise direction be P1, P2, P3, Pn and the vertices of the 
right polygon in the clockwise direction be Q1, Q2, Q3 ... 
Qm .The two polygons will be represented in the form of an 
array as shown in the below figure. 
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Fig. 4: The initial array before merging the convex polygons 

Let Pi be the left end point of the common upper tangent and 
Pj be the left end point of the common lower tangent of the 
two convex polygons. Similarly ,Qa be the right end point of 
the common upper tangent and Qb be the right end point of 
the common lower tangent of the two convex polygons. 

 

Fig. 5: Initial array with the points Pi, Pj, Qa, Qb 

We will be modifying the left polygon such that the vertices Pj 
to Pi will appear at the starting of the array in clockwise 
direction .Rest of the vertices will lie between vertices Pi and 
Qi .This can be accomplished by performing three reverse 
operations on the part of the array P1 to Pn. The operations 
are: 

a) Reverse the part of array between P1 to Pj-1. b) Reverse the 
part of the array between Pj to Pn. 

c) Reverse the whole array containing the vertices of the left 
polygon. 

 
Fig. 6: Array after performing reversal operations on the polygon 

P and polygon Q 

Similarly we will be modifying the right polygon such that 
the vertices from Qa to Qb will appear at the starting of the 
part of array containing the vertices of right convex polygon 
in clockwise direction. Rest of the vertices will lie after 
Qb.This can be accomplished by performing three reverse 
operations on the part of the array Q1 to Qm.The operations 
are:a) Reverse the part of array Q1 to Qa-1. 

b) Reverse the part of the array between Qa to Qm. 

c) Reverse the whole array containing the vertices of the right 
polygon. 

Now we need to arrange the vertices such that the starting 
vertices of the array will represent the vertices of the merged 
convex polygon in clockwise order. For that we need to shift 
the vertices from Qa to Qb after the vertex Pi in the array.For 
accomplishing this we require three reverse operation as 
Follows: 

a) Reverse the part of the array from Qa to Qb. 

b) Reverse the part of the array from Pi+1 to Pj-1. c) Reverse 
the part of array from Pj-1 to Qa. 

The final results would be as follows: 

 
Fig. 7: Array after merging polygons P and Q 

The part of the array from Pj to Qb represents the vertices of 
the merged convex polygon in clockwise direction. 

5. COMPLEXITY ANALYSIS 

5.1. Time complexity Analysis 

5.1.1. Time Complexity of Convex Hull 

Algorithm 
In each step of the recursion we are splitting the array into two 
sub arrays of the equal size and recursively calling Hull 
module for the two sub arrays. Once we get the convex hull of 
the two sub arrays we merge them so as to form the convex 
hull of the entire array.The process of merging of two convex 
polygons takes linear time and constant space (See the time 
complexity analysis part of the algorithm of merging of two 
convex polygons) . Hence at each level we are subdividing 
the array and then merging it. This whole process requires 
linear time and constant space. The time complexity of the 
algorithm is given by the expression: 

T(n) = 2T(n/2) + O(n) 

which on solving using Master's theorem gives 

T(n) = O(nlogn) 

The time Complexity for the pre-processing step (sorting the 
point set on the basis of their x co- ordinate) takes O(nlogn) 
time. Hence the time complexity of the algorithm is O(nlogn). 

5.1.2. Time Complexity of Merging of Convex 

Polygon 
Assume 'n' be the number of points in the left polygon and 'm' 
be the number of ppints on the right polygon. 

1) To compute the common upper tangent of the convex 
polygons, the step 1 takes O(n+m) time to find out the left 
most point of the right polygon and right most point of the left 
polygon. 

2) Step 2 and step 3 require O(n+m) time. Similarly to 
compute the lower common tangent the time complexity is 
O(n+m). 

3)In order to obtain the required result we need to perform the 
three shifting operations each one requiring three reverse 
operations. The total time taken by this process is O(n+m). 

The total time complexity of the algorithm is 

O(n+m). 
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5.2. SPACE COMPLEXITY ANALYSIS 

The entire algorithm doesn't require any extra space as the 
splitting and merging is done in-place. Hence the space 
complexity of the algorithm is O(1). 

The merging step of Convex Hull Algorithm i.e. merging of 
two convex polygon takes constant amount of space. All the 
reversing operations needed to obtain the final result are being 
performed on the input array thereby requiring no extra space. 
Hence, the space complexity of the algorithm is O(1). 
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